FEATURES

- High Output Power: \(P_{\text{out}} = 33.0 \text{dBm} \) (typ.)
- High Linear Gain: \(G_L = 26.0 \text{dB} \) (typ.)
- Broad Band: 12.7 to 15.4 GHz
- Impedance Matched \(Z_{\text{in}}/Z_{\text{out}} = 50 \Omega \)

DESCRIPTION

The EMM5075X is a MMIC amplifier that contains a three-stages amplifier, internally matched, for standard communications band in the 12.7 to 15.4 GHz frequency range.

Sumitomo Electric Device Innovations’s stringent Quality Assurance Program assures the highest reliability and consistent performance.

ABSOLUTE MAXIMUM RATING

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-Source Voltage</td>
<td>(V_{\text{DD}})</td>
<td>10</td>
<td>V</td>
</tr>
<tr>
<td>Gate-Source Voltage</td>
<td>(V_{\text{GG}})</td>
<td>-3</td>
<td>V</td>
</tr>
<tr>
<td>Input Power</td>
<td>(P_{\text{in}})</td>
<td>26</td>
<td>dBm</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>(T_{\text{stg}})</td>
<td>-55 to +125</td>
<td>℃</td>
</tr>
</tbody>
</table>

RECOMMENDED OPERATING CONDITIONS

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Condition</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-Source Voltage</td>
<td>(V_{\text{DD}})</td>
<td>(\leq 7)</td>
<td>V</td>
</tr>
<tr>
<td>Input Power</td>
<td>(P_{\text{in}})</td>
<td>(\leq 16)</td>
<td>dBm</td>
</tr>
<tr>
<td>Operating Case Temperature</td>
<td>(T_C)</td>
<td>-40 to +85</td>
<td>℃</td>
</tr>
</tbody>
</table>

This Product should be hermetically packaged.

ELECTRICAL CHARACTERISTICS (Case Temperature \(T_a = 25^\circ \text{C} \))

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Limits</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Frequency Range</td>
<td>(f)</td>
<td>(V_{\text{DD}} = +6 \text{V})</td>
<td>12.7, 15.4</td>
<td>GHz</td>
</tr>
<tr>
<td>Output Power at 1dB G.C.P.</td>
<td>(P_{1\text{dB}})</td>
<td>(I_{\text{DD,DC}} = 1200 \text{mA}) typ.</td>
<td>32, 33</td>
<td>dBm</td>
</tr>
<tr>
<td>Power Gain at 1dB G.C.P.</td>
<td>(G_{1\text{dB}})</td>
<td>(Z_S = Z_L = 50 \Omega)</td>
<td>22, 26</td>
<td>dB</td>
</tr>
<tr>
<td>Power-added Efficiency at 1dB G.C.P.</td>
<td>(N_{\text{add}})</td>
<td>-</td>
<td>26</td>
<td>%</td>
</tr>
<tr>
<td>Drain Current at 1dB G.C.P.</td>
<td>(I_{\text{DRF}})</td>
<td>-</td>
<td>1300, 1900</td>
<td>mA</td>
</tr>
<tr>
<td>3rd. Order Intermodulation Distortion *</td>
<td>(IM_3)</td>
<td>(df = +10 \text{MHz})</td>
<td>-40, -47, -</td>
<td>dBc</td>
</tr>
<tr>
<td>Input Return Loss (at Pin=-20dBm)</td>
<td>(R_{\text{LIN}})</td>
<td>(P_0 = 20 \text{dBm}) S.C.L</td>
<td>-8</td>
<td>dB</td>
</tr>
<tr>
<td>Output Return Loss (at Pin=-20dBm)</td>
<td>(R_{\text{OUT}})</td>
<td>-</td>
<td>-15</td>
<td>dB</td>
</tr>
</tbody>
</table>

*Note: RF parameter sample size 10ps. Criteria (accept/reject)=(0/1) G.C.P. : Gain Compression Point SCL : Single Carrier Level

ESD

Class	~ 249V

RoHS Compliance

| Yes |
EMM5075X
Ku-Band Power Amplifier MMIC

OUTPUT POWER vs. FREQUENCY

@VDD=6V, IDD(DC)=1200mA

OUTPUT POWER, DRAIN CURRENT
vs. INPUT POWER

@VDD=6V, IDD(DC)=1200mA

POWER-ADDED EFFICIENCY vs FREQUENCY

@VDD=6V, IDD(DC)=1200mA
EMM5075X
Ku-Band Power Amplifier MMIC

IMD vs. FREQUENCY
@VDD=6V, IDD(DC)=1200mA, Pout=20dBm S.C.L.

IMD vs OUTPUT POWER
@VDD=6V, IDD(DC)=1200mA

3rd Order Intermodulation Distortion [dBc]
2-Tone Total Output Power [dBm]

Frequency [GHz]

11.5 12 12.5 13 13.5 14 14.5 15 15.5 16 16.5

-60 -55 -50 -45 -40 -35 -30 -25 -20

12.7GHz 13.5GHz 14.5GHz 15.4GHz

IM3 IM5
EMM5075X
Ku-Band Power Amplifier MMIC

IMD PERFORMANCE vs. OUTPUT POWER by Drain Voltage

@\(\text{IDD(DC)}=1200\text{mA}, f=12.7\text{GHz}\)

@\(\text{IDD(DC)}=1200\text{mA}, f=13.5\text{GHz}\)

@\(\text{IDD(DC)}=1200\text{mA}, f=14.5\text{GHz}\)

@\(\text{IDD(DC)}=1200\text{mA}, f=15.4\text{GHz}\)

IM3
IM5

2-Tone Total Output Power [dBm]

Intermodulation Distortion [dBc]
EMM5075X
Ku-Band Power Amplifier MMIC

IMD PERFORMANCE vs. OUTPUT POWER by Drain Current

@VDD=6V, f=12.7GHz

IMD PERFORMANCE vs. OUTPUT POWER by Drain Current

@VDD=6V, f=13.5GHz

IMD PERFORMANCE vs. OUTPUT POWER by Drain Current

@VDD=6V, f=14.5GHz

IMD PERFORMANCE vs. OUTPUT POWER by Drain Current

@VDD=6V, f=15.4GHz
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.999</td>
<td>-20.0</td>
<td>0.057</td>
<td>43.2</td>
<td>0.001</td>
<td>-43.8</td>
<td>0.996</td>
<td>-31.0</td>
</tr>
<tr>
<td>2.0</td>
<td>0.995</td>
<td>-40.2</td>
<td>0.483</td>
<td>-103.8</td>
<td>0.001</td>
<td>-67.7</td>
<td>0.971</td>
<td>-118.8</td>
</tr>
<tr>
<td>3.0</td>
<td>0.988</td>
<td>-60.3</td>
<td>0.741</td>
<td>106.2</td>
<td>0.001</td>
<td>-79.9</td>
<td>0.957</td>
<td>-89.7</td>
</tr>
<tr>
<td>4.0</td>
<td>0.980</td>
<td>-80.0</td>
<td>0.398</td>
<td>11.6</td>
<td>0.002</td>
<td>-112.8</td>
<td>0.949</td>
<td>-118.8</td>
</tr>
<tr>
<td>5.0</td>
<td>0.970</td>
<td>-99.4</td>
<td>0.155</td>
<td>-34.2</td>
<td>0.002</td>
<td>-97.1</td>
<td>0.905</td>
<td>-154.3</td>
</tr>
<tr>
<td>6.0</td>
<td>0.945</td>
<td>-137.6</td>
<td>0.220</td>
<td>36.2</td>
<td>0.001</td>
<td>-89.4</td>
<td>0.867</td>
<td>151.3</td>
</tr>
<tr>
<td>7.0</td>
<td>0.940</td>
<td>-156.5</td>
<td>0.477</td>
<td>-40.0</td>
<td>0.002</td>
<td>-120.3</td>
<td>0.789</td>
<td>113.8</td>
</tr>
<tr>
<td>8.0</td>
<td>0.927</td>
<td>-176.4</td>
<td>3.477</td>
<td>-167.2</td>
<td>0.003</td>
<td>-103.3</td>
<td>0.645</td>
<td>67.2</td>
</tr>
<tr>
<td>9.0</td>
<td>0.911</td>
<td>161.9</td>
<td>8.552</td>
<td>106.8</td>
<td>0.003</td>
<td>-105.4</td>
<td>0.396</td>
<td>13.0</td>
</tr>
<tr>
<td>10.0</td>
<td>0.864</td>
<td>135.9</td>
<td>13.901</td>
<td>20.3</td>
<td>0.003</td>
<td>-100.8</td>
<td>0.204</td>
<td>-83.8</td>
</tr>
<tr>
<td>11.0</td>
<td>0.861</td>
<td>97.2</td>
<td>25.732</td>
<td>-81.6</td>
<td>0.003</td>
<td>-92.6</td>
<td>0.240</td>
<td>-83.8</td>
</tr>
<tr>
<td>12.0</td>
<td>0.614</td>
<td>92.3</td>
<td>27.138</td>
<td>-93.9</td>
<td>0.003</td>
<td>-104.6</td>
<td>0.145</td>
<td>-162.0</td>
</tr>
<tr>
<td>13.0</td>
<td>0.317</td>
<td>76.9</td>
<td>31.142</td>
<td>-159.8</td>
<td>0.002</td>
<td>-91.2</td>
<td>0.138</td>
<td>-171.3</td>
</tr>
<tr>
<td>14.0</td>
<td>0.261</td>
<td>77.9</td>
<td>31.335</td>
<td>-173.2</td>
<td>0.003</td>
<td>-66.6</td>
<td>0.129</td>
<td>151.7</td>
</tr>
<tr>
<td>15.0</td>
<td>0.210</td>
<td>86.0</td>
<td>30.973</td>
<td>173.8</td>
<td>0.003</td>
<td>-86.0</td>
<td>0.131</td>
<td>146.0</td>
</tr>
</tbody>
</table>

VDD=6V, IDD=1200mA
EMM5075X
Ku-Band Power Amplifier MMIC

S-PARAMETER

@VDD=6V, IDD=1200mA

@VDD=6V, IDD=1200mA
EMM5075X
Ku-Band Power Amplifier MMIC

ΔTch vs. Drain Voltage
(Reference)

IDD(DC)=1200mA

MTTF vs. Tch

Note ΔTch : Temperature Rise from Backside of MMIC to Channel
Assembly Diagrams

Recommended assembly

“Copper” is the recommended material for the package or carrier.
EMM5075X
Ku-Band Power Amplifier MMIC

Chip Outline and Bonding Pad Locations (Dimension in Micro-Meters)

- Chip Size: 3385±30um x 2620±30um
- Chip Thickness: 60±20um
- Bonding Pad Size: 160um x 80um
DIE ATTACH

1) The die-attach station must have accurate temperature control and an inert forming gas should be used.
2) Chips should be kept at room temperature except during die-attach.
3) Place package or carrier on the heated stage.
4) Lightly grasp the chip edges by the longer side using tweezers.

Die attach conditions

Stage Temperature : 300 to 310 deg.C
Time : less than 15 seconds

Die attach material : AuSn

AuSn Preform Volume : per next Figure

WIRE BONDING

The bonding equipment must be properly grounded. The following or equivalent equipment, tools, materials, and conditions are recommended. However, when bonding wire on the MMIC, the condition should be verified by customer using their equipment and materials.

1) Bonding Equipment and Bonding Tool.
 Bonding Equipment : SINKAWA UTC-300 (automatic ball bonder)
 Bonding Tool : ADAMANT AD-2-38LB20

2) Bonding Wire
 Material : Hard or Half hard gold
 Diameter : 0.7 to 1.0 mil

3) Bonding Conditions
 Method : Thermal Compression Bonding with Ultrasonic Power
 Tool Force : 0.294 N to 0.882 N
 Stage Temperature : 230 deg.C +/- 5 deg.C
 Ultrasonic Power : 30 to 90
 Ultrasonic Power Time : 10ms to 60ms
EMM5075X
Ku-Band Power Amplifier MMIC

For further information please contact:

Sumitomo Electric Device Innovations,
U.S.A., Inc.
2355 Zanker Rd.
San Jose, CA 95131-1138, U.S.A.
TEL: +1 408 232-9500
FAX: +1 408 428-9111

Sumitomo Electric Europe Ltd.
220 Centennial Park,
Elestree WD6 3SL United Kingdom
TEL: +44 (0) 20 89538118
FAX: +44 (0) 20 89538228

Sumitomo Electric Europe Ltd. (Italy Branch)
Piazza Don E. Mapelli, 60-20099
Sesto San Giovanni, Milano- Italy
TEL: +39-02-496386-01
FAX: +39-02-496386-25

Sumitomo Electric Asia, Ltd.
Room 2624-2637, 26F
Sun Hung Kai Centre,
30 Harbour Road Wanchai,
Hong Kong
TEL: +852-2579-0080
FAX: +852-2576-6412

Sumitomo Electric Device Innovations, Inc.
1000 Kamisukiahara, showa-cho
Nakakomagun, Yamanashi
409-3883, Japan
(Kokubo Industrial Park)
TEL +81-55-275-4411
FAX +81-55-275-9461

Sumitomo Electric Industries, Ltd.
Head Office (Tokyo)
3-9-1, Shibaura, Minato-ku, Tokyo 108-8539,
Japan
TEL +81-3-6722-3287
FAX +81-3-6722-3284

CAUTION
Sumitomo Electric Device Innovations, Inc. products contain gallium arsenide (GaAs) which can be hazardous to the human body and the environment. For safety, observe the following procedures:

- Do not put these products into the mouth.
- Do not alter the form of this product into a gas, powder, or liquid through burning, crushing, or chemical processing as these by-products are dangerous to the human body if inhaled, ingested, or swallowed.
- Observe government laws and company regulations when discarding this product. This product must be discarded in accordance with methods specified by applicable hazardous waste procedures.

Sumitomo Electric Device Innovations, Inc. reserves the right to change products and specifications without notice. The information does not convey any license under rights of Sumitomo Electric Device Innovations, Inc. or others.

© 2010 Sumitomo Electric Device Innovations, Inc.