

■ Features

High Output Power: P_{5dB}=48.0dBm (Typ.)

High Gain: GL=12.0dB (Typ.)

High Power Added Efficiency: PAE=39% (Typ.)

Broad Band: 6.4 to 7.2GHzHermetically Sealed Package

Description

The SGK6472-60A is a high power GaN-HEMT that is internally matched for standard communication bands to provide optimum power and gain in a 50ohm system.

ABSOLUTE MAXIMUM RATING (Case Temperature $T_c=25 \text{ deg.C}$)

Item	Symbol	Rating	Unit	
Drain-Source Voltage	V_{DS}	26	V	
Gate-Source Voltage	V_{GS}	-10	V	
Total Power Dissipation	P _T	112	W	
Storage Temperature	T_{stg}	-55 to +125	deg.C	
Channel Temperature	T _{ch}	+250	deg.C	
Case Temperature	T _c	-40 to +125	deg.C	

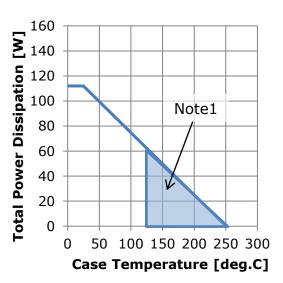
RECOMMENDED OPERATING CONDITION

Item	Symbol	Condition	Limit	Unit		
Drain-Source Voltage	V_{DS}		<=24	V		
Forward Gate Current	I_{GF}	Rg=51ohm	<=12.2	mA		
Reverse Gate Current	I_{GR}	Rg=51ohm	>=-6.4	mA		
Channel Temperature	T _{ch}		<+192	deg.C		

ELECTRICAL CHARACTERISTICS (Case Temperature T_c=25 deg.C)

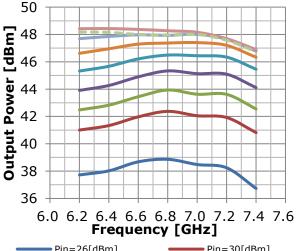
Item	Symbol	Condition	Limit			Unit	
item	Symbol	Condition	Min.	Тур.	Max.	Unit	
Saturated Drain Current	I _{DSS}	$V_{DS}=10V$, $V_{GS}=0V$	-	13	-	Α	
Trans Conductance	G _m	V _{DS} =24V, I _{DS} =2.6A	-	6.0	-	S	
Pinch-off Voltage	V _P	V _{DS} =24V, I _{DS} =2.6mA	-	-3	-	V	
Output Power at 5dB G.C.P.	P _{5dB}		47.0	48.0	-	dBm	
Linear Gain at Pin=26dBm	GL	VDS=24V(typ.)	11.0	12.0	-	dB	
Drain Current at 5dB G.C.P.	I _{DSR}	IDS(DC)=2.6A(typ.) f=6.4 to 7.2 GHz	-	5.4	7.0	Α	
Power Added Efficiency at 3dB G.C.P.	PAE	Vgs-constant	-	39	-	%	
Gain Flatness	ΔG	1 90 00	-	-	1.6	dB	
3rd Order Inter modulation Distortion	IM ₃	f=6.4GHz, 7.2GHz Δf=10MHz, 2-tone Test Pout=32.0dBm (S.C.L.)	-40.0	-	-	dBc	
Thermal Resistance	R _{th}	Channel to Case (T _c =25deg.C, P _{diss} =62.4W)	-	1.3	1.5	deg.C/W	
Channel Temperature Rise	ΔT_{ch}	$(V_{DS} \times I_{DSR} - Pout + Pin) \times R_{th}$	-	100	150	deg.C	

G.C.P.: Gain Compression Point, S.C.L.: Single Carrier Level

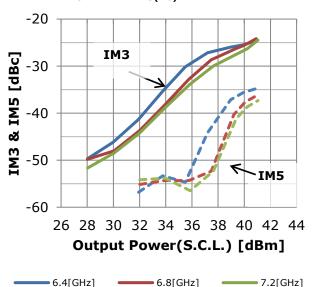

CASE STYLE	IBK	
RoHS Compliance	YES	
ESD	Class 1C	1000V to <2000V

Note: Based on ANSI/ESDA/JEDEC JS-001-2012(C=100pF, R=1.5kohm)

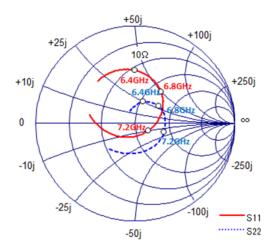
RF Characteristics

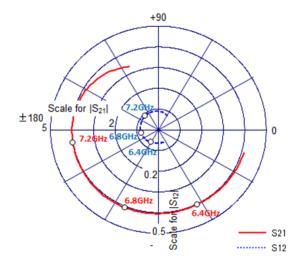

Power Derating Curve

Note 1: Shaded area exceeds Maximum Case Temperature (See Page1)

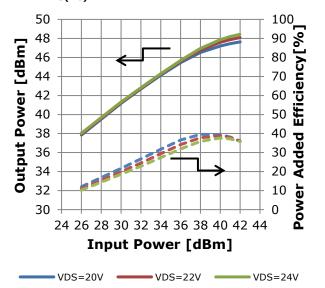

Input Power vs. Output Power and Power Added Efficiency $V_{DS} = 24V, I_{DS(DC)} = 2600 mA$ 50 100 Power Added Efficiency[%] 48 90 Output Power [dBm] 80 46 44 70 42 60 40 50 38 40 36 30 34 20 32 10 30 0 24 26 28 30 32 34 36 38 40 42 44 Input Power [dBm] 6.4[GHz] 6.8[GHz] 7.2[GHz]

Output Power vs. Frequency V_{DS} =24V, $I_{DS(DC)}$ =2600mA

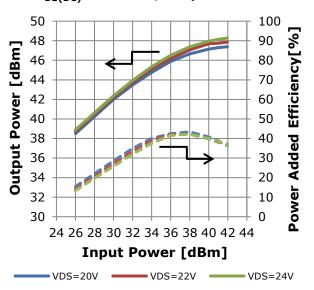

Pin=26[dBm] Pin=30[dBm]
Pin=32[dBm] Pin=34[dBm]
Pin=36[dBm] Pin=38[dBm]
Pin=40[dBm] Pin=42[dBm]
P5dB


IMD vs. Output Power V_{DS}=24V, I_{DS(DC)}=2600mA

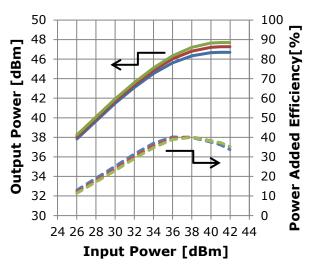
• S-Parameter


Bias Condition V_{DS} =24V, I_{DS} =2.6A Rg = 51ohm

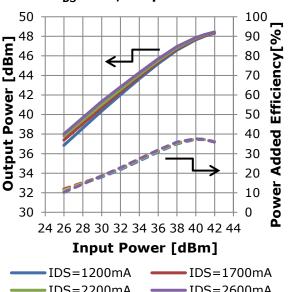
Erog	S11		S21		S12		S22		
Freq.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	
6200MHz	0.573	109.4	4.045	-40.2	0.066	-95.9	0.195	84.9	
6300MHz	0.561	99.6	4.028	-51.9	0.068	-108.2	0.219	77.4	
6400MHz	0.544	90.2	4.024	-63.6	0.071	-120.7	0.239	70.0	
6500MHz	0.520	80.9	4.032	-75.4	0.073	-132.8	0.252	62.6	
6600MHz	0.493	71.7	4.045	-87.1	0.075	-145.1	0.268	54.0	
6700MHz	0.459	62.0	4.058	-99.4	0.078	-157.4	0.284	44.9	
6800MHz	0.416	51.2	4.066	-112.2	0.081	-169.9	0.298	36.5	
6900MHz	0.362	39.1	4.063	-125.6	0.084	177.2	0.306	27.4	
7000MHz	0.297	25.2	4.050	-139.6	0.086	163.2	0.305	15.0	
7100MHz	0.224	5.6	4.030	-154.8	0.089	149.0	0.303	0.7	
7200MHz	0.151	-27.7	4.018	-171.1	0.091	133.4	0.304	-17.3	
7300MHz	0.132	-90.0	3.999	171.3	0.092	116.8	0.300	-39.4	
7400MHz	0.212	-141.8	3.893	152.8	0.091	98.8	0.296	-67.3	

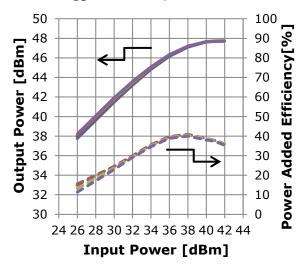


• RF Characteristics - V_{DS} dependence

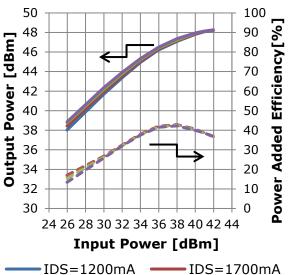

Input Power vs. Output Power and Power Added Efficiency I_{DS(DC)}=2600mA, freq.=6.4GHz

Input Power vs. Output Power and Power Added Efficiency I_{DS(DC)}=2600mA, freq.=6.8GHz


Input Power vs. Output Power and Power Added Efficiency I_{DS(DC)}=2600mA, freq.=7.2GHz

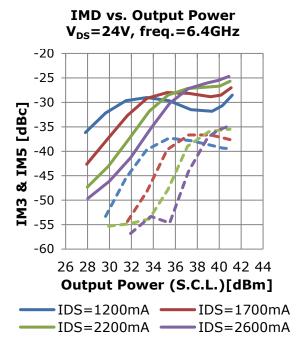

• RF Characteristics - I_{DS(DC)} dependence

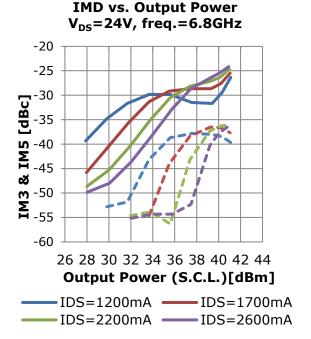
Input Power vs. Output Power and **Power Added Efficiency** V_{DS} =24V, freq.=6.4GHz


-IDS=2600mA -IDS=2200mA

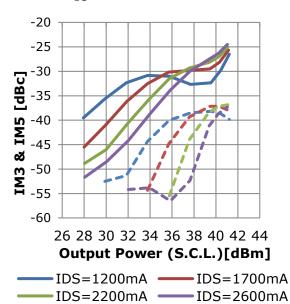
Input Power vs. Output Power and **Power Added Efficiency** V_{DS} =24V, freq.=7.2GHz

IDS=1200mA -IDS=1700mA IDS=2200mA IDS=2600mA


Input Power vs. Output Power and Power Added Efficiency V_{DS} =24V, freq.=6.8GHz



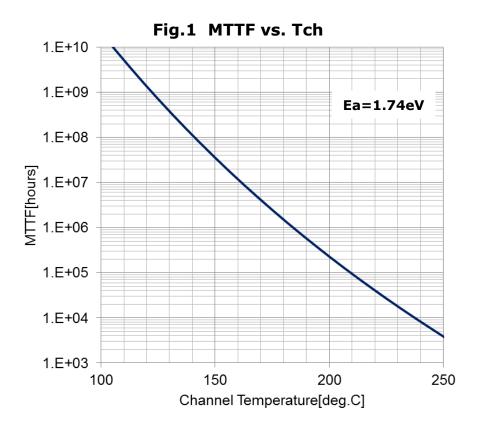
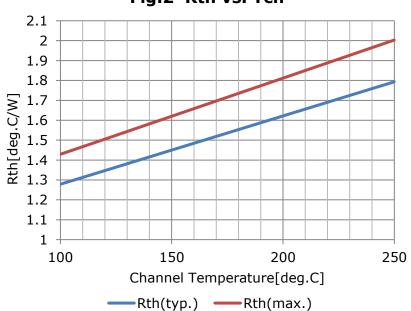
IDS=2200mA —— IDS=2600mA

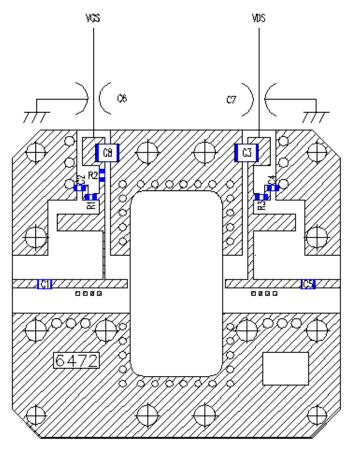


● RF Characteristics—I_{DS(DC)} dependence

IMD vs. Output Power V_{DS}=24V, freq.=7.2GHz

• MTTF vs. Tch


Fig.2 Rth vs. Tch

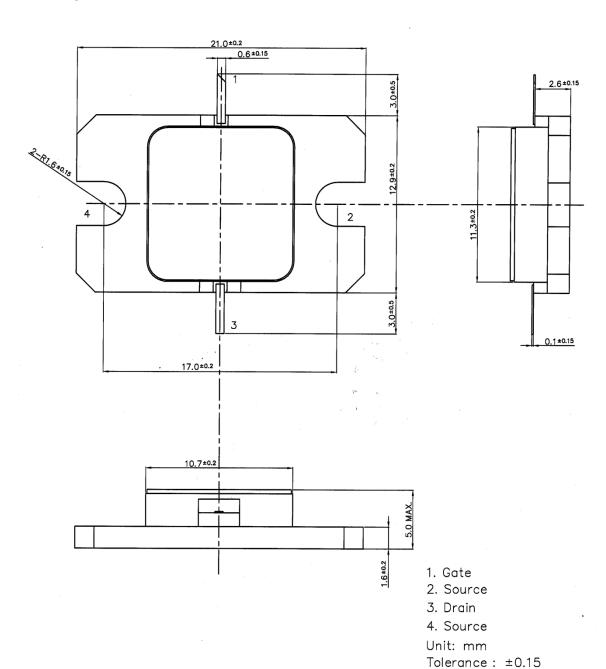
• Amplifier Circuit Outline

SGK6472-60A

C1	3.0pF
C2	1000pF
C3	0.1uF
C4	1000pF
C5	3.0pF
C6	1000pF
C7	1000pF
C8	0.1uF
R1	51ohm
R2	51ohm
R3	51ohm

Substrate : Rogers RO4003C h=0.542mm, $\epsilon r=3.38$

Cu=18um


C1, C5 : ATC600L(size:0805), +/- 0.1pF

C6, C7 : EMI FILTER MARUWA(FTA352AR102S-S)

Package Outline

Case Style: IBK

For Safety, Observe the Following Procedures Environmental Management

- Do not put this product into the mouth.
- Do not alter the form of this product into a gas, powder, or liquid through burning, crushing, or chemical processing as these by-products are dangerous to the human body if inhaled, ingested, or swallowed.
- Respect all applicable laws of the country when discarding this product.
 This product must be disposed in accordance with methods specified by applicable hazardous waste procedures.

Any information, such as descriptions of a function and examples of application circuits, in this document are presented solely as a reference for the purpose to show examples of operations and uses of Sumitomo Electric semiconductor device(s); Sumitomo Electric does not warrant the proper operation of the device(s) with respect to its use based on such information. When the user develops equipment incorporating the device(s) based on such information, they must assume full responsibility arising out of using such information. Sumitomo Electric assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as a license for the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Sumitomo Electric or any third party nor does Sumitomo Electric warrant non-infringement of any third-party's intellectual property right or other right by using such information. Sumitomo Electric assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including, without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite). Please note that Sumitomo Electric will not be liable to the user and/or any third party for any claims or damages arising from the aforementioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of excessive current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization of the Japanese government will be required for export of those products from Japan.

http://www.sedi.co.jp/

ATTENTION

Information in this document is subject to change without notice.

Edition 1.3
Jan. 2021

-10SUMITOMO ELECTRIC GROUP