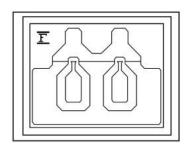


GaAs HEMT Chips

FEATURES

Low Noise Figure: 0.45dB (Typ.)@f=12GHz (FHX13)

• High Associated Gain: 13.0dB (Typ.)@f=12GHz


• Lg ≤ 0.15um, Wg = 200um

· Gold Gate Metallization for High Reliability

DESCRIPTION

The FHX13X, FHX14X are Super High Electron Mobility Transistor (SuperHEMT™) intended for general purpose, ultra-low noise and high gain amplifiers in the 2 to 18GHz frequency range. The devices are well suited for telecommunication, DBS, TVRO, VSAT or other low noise applications.

Sumitomo Electric stringent Quality Assurance Program assures the highest reliability and consistent performance.

ABSOLUTE MAXIMUM RATING (Ambient Temperature Ta=25deg.C)

ltem	Symbol	Rating	Unit
Drain-Source Voltage	V _{DS}	3.5	V
Gate-Source Voltage	V_{GS}	-3.0	V
Total Power Dissipation	P _{t*}	180	mW
Storage Temperature	T _{stq}	-65 to +175	deg.C
Channel Temperature	T _{ch}	175	deg.C

^{*}Note: Mounted on Al₂O₃ board (30 x 30 x 0.65mm)

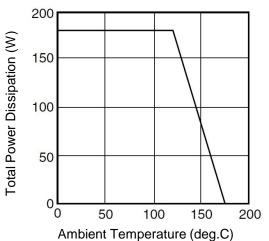
Sumitomo Electric recommends the following conditions for the reliable operation of GaAs FETs:

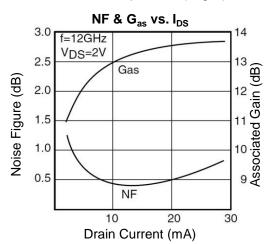
- 1. The drain-source operating voltage (V_{DS}) should not exceed 2 volts.
- 2. The forw ard and reverse gate currents should not exceed 0.2 and -0.05mA respectively with gate resistance of 4000ohm.
- 3. The operating channel temperature (T_{ch}) should not exceed 80deg.C.

ELECTRICAL CHARACTERISTICS (Ambient Temperature Ta=25deg.C)

Item		Symbol	Test Conditions	Limit			Unit
		Symbol	rest Conditions		Тур.	Max.	Ollit
Saturated Drain Current		I _{DSS}	$V_{DS} = 2V$, $V_{GS} = 0V$	10	30	60	mA
Transconductance		gm	$V_{DS} = 2V$, $I_{DS} = 10mA$	-	mS		
Pinch-off Voltage		Vp	$V_{DS} = 2V$, $I_{DS} = 1mA$	-1.5	V		
Gate Source Breakdown Voltage		V_{GSO}	$I_{GS} = -10uA$	-3.0	1	-	V
Noise Figure	FHX13X	NF	V _{DS} = 2V	-	0.45	0.50	dB
Associated Gain	FUVIOV	I G		11.0	13.0	-	dB
Noise Figure	FHX14X	NF	I _{DS} = 10mA	-	0.55	0.60	dB
Associated Gain	ΓΠΛΙ4Λ	Gas	f = 12GHz	11.0	13.0	-	dB
Thermal Resistance		R _{th}	Channel to Case	-	220	300	deg.C/W

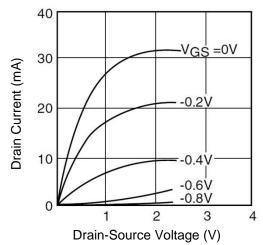
Note: RF parameter sample size 10pcs. criteria (accept/reject)=(2/3)


The chip must be enclosed in a hermetically sealed environment for optimum performance and reliability.

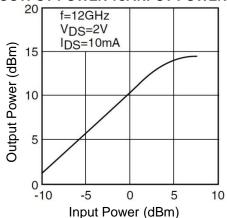

RoHS Compliance	Yes

GaAs HEMT Chips

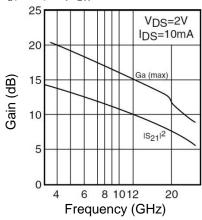
POWER DERATING CURVE



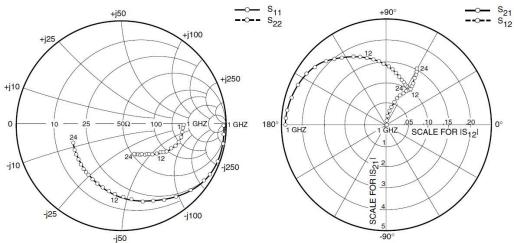
NOISE PARAMETERS


 $V_{DS} = 2V$, $I_{DS} = 10mA$

	• 03	- · , ·DS			
Freq.	Г	opt	NFmin	Rn/50	
(GHz)	(MAG)	(ANG)	(dB)	111/30	
2	0.92	13	0.28	0.65	
4	0.84	25	0.30	0.54	
6	0.77	38	0.32	0.41	
8	0.71	51	0.34	0.31	
10	0.66	65	0.39	0.23	
12	0.61	79	0.45	0.17	
14	0.58	93	0.56	0.12	
16	0.56	108	0.68	0.09	
18	0.54	122	0.86	0.07	
20	0.52	136	1.03	0.07	
22	0.50	150	1.22	0.07	
24	0.46	162	1.43	0.07	


DRAIN CURRENT vs. DRAIN-SOURCE VOLTAGE

OUTPUT POWER vs. INPUT POWER



G_a(max) & |S₂₁|² vs. FREQUENCY

GaAs HEMT Chips

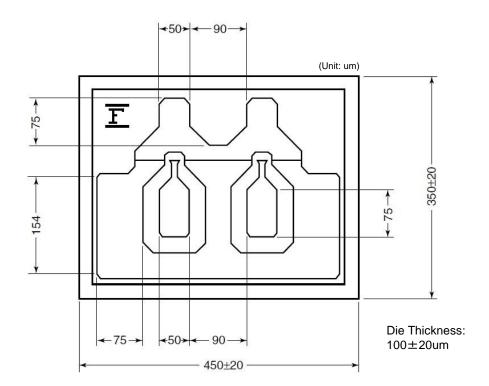
S-PARAMETERS

 $V_{DS} = 2V$, $I_{DS} = 10mA$

Freq	S1 ⁻	1	S21		S12	S12		S22	
(MHz)	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG	
100	1.000	-0.9	4.899	179.2	0.001	89.5	0.601	-0.5	
500	0.999	-4.7	4.894	175.9	0.006	87.7	0.601	-2.3	
1000	0.995	-9.4	4.876	171.9	0.013	85.5	0.599	-4.6	
2000	0.981	-18.6	4.806	163.9	0.025	81.1	0.591	-9.2	
3000	0.958	-27.7	4.696	156.1	0.037	77.0	0.580	-13.5	
4000	0.929	-36.4	4.555	148.6	0.048	73.2	0.565	-17.7	
5000	0.895	-44.9	4.392	141.5	0.057	69.8	0.548	-21.5	
6000	0.860	-53.0	4.215	134.8	0.066	66.8	0.530	-25.0	
7000	0.823	-60.7	4.034	128.4	0.074	64.2	0.512	-28.3	
8000	0.786	-68.1	3.852	122.4	0.080	62.0	0.493	-31.3	
9000	0.751	-75.3	3.675	116.8	0.086	60.2	0.475	-34.0	
10000	0.718	-82.1	3.506	111.5	0.092	58.9	0.458	-36.6	
11000	0.687	-88.7	3.345	106.5	0.096	57.8	0.442	-39.0	
12000	0.659	-95.0	3.194	101.8	0.101	57.1	0.426	-41.3	
13000	0.633	-101.2	3.054	97.3	0.105	56.6	0.412	-43.6	
14000	0.610	-107.2	2.923	93.0	0.108	56.4	0.399	-45.8	
15000	0.590	-113.0	2.801	88.9	0.112	56.4	0.386	-47.9	
16000	0.572	-118.7	2.688	85.0	0.116	56.6	0.375	-50.1	
17000	0.556	-124.2	2.584	81.3	0.120	56.9	0.364	-52.3	
18000	0.543	-129.6	2.487	77.7	0.124	57.3	0.353	-54.6	
19000	0.532	-134.9	2.397	74.2	0.129	57.8	0.344	-56.9	
20000	0.523	-140.0	2.314	70.8	0.133	58.4	0.335	-59.4	
21000	0.516	-145.0	2.236	67.5	0.138	58.9	0.326	-62.0	
22000	0.511	-149.8	2.164	64.4	0.144	59.5	0.318	-64.7	
23000	0.507	-154.6	2.096	61.3	0.150	60.0	0.310	-67.5	
24000	0.505	-159.2	2.033	58.3	0.156	60.5	0.303	-70.5	

NOTE:* The data includes bonding wires.

n: number of wires Gate Drain


Gate n=2 (0.3mm length, 20um Dia Au wire)
Drain n=2 (0.3mm length, 20um Dia Au wire)
Source n=4 (0.3mm length, 20um Dia Au wire)

GaAs HEMT Chips

CHIP OUTLINE

GaAs HEMT Chips

■ BARE DIE INDEMNIFICATION

All devices are DC probed and visually inspected at SEI, and non-compliant devices are removed. The RF electrical characteristics of the bare dice are warranted by the sampling inspection procedures. The standard sampling inspection procedure shall include the number of the sampling dice, position of the sampling dice in the wafer and RF electrical characteristics of the sampling dice measured in the test fixture. Customer shall understand that all the bare dice will not be 100% RF tested by SEI. It is the customer responsibility to verify performance of the devices.

Customer shall comply with the storage and handling requirements for condition and period of storage of the bare dice agreed by customer and SEI. Warranty will not apply when customer disregards the storage and handling requirements.

Warranty will not apply to the electrical characteristics and product quality to the bare dice after assembly by customer.

SEI will indemnify customer for warranty failures, provided however that the indemnification to customer shall be limited to supply of bare dice for substitution.

CAUTION

Sumitomo Electric Device Innovations, Inc. products contain **gallium arsenide (GaAs)** which can be hazardous to the human body and the environment. For safety, observe the following procedures:

- •Do not put these products into the mouth.
- Do not alter the form of this product into a gas, powder, or liquid through burning, crushing, or chemical processing as these by-products are dangerous to the human body if inhaled, ingested, or swallowed.
- •Observe government laws and company regulations when discarding this product. This product must be discarded in accordance with methods specified by applicable hazardous waste procedures.